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pared by the reaction of BiOHi2CNH2CH2C6H5
4 with 

NiCl2 in aqueous sodium hydroxide. 
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endo- and exo-8-Chlorohomotropylium Salts 

Sir: 

The occurrence of an 8-halohomotropylium ion as 
an intermediate in the halogenation of cyclooctatetraene 
is conceivable. It would explain the unique features 
of this reaction.l To provide evidence for this mech­
anistic possibility, we prepared exo- and endo-S-chloxo-
homotropylium salts, von Rosenberg, Mahler, and 
Pettit2 obtained stable homotropylium salts by the re­
action of cyclooctatetraene with strong acids. Fur­
ther studies in the laboratories of Winstein3 and 
Pettit4 confirmed the homoaromatic character of the 
cationic species. 

We treated m-7,8-dichlorocycloocta-l,3,5-triene6(IA 
and IB) with antimony pentachloride in dichlorometh-
ane at —15° and isolated the crystalline, colorless 
exo-8-chlorohomotropylium hexachloroantimonate (II, 
X - = SbCl6-) in 95% yield.6 The salt (mp 82-85° 
dec in a sealed tube) is stable at room temperature 
but decomposes on exposure to moist air. Structural 
assignment is based on the nmr spectrum (CD3NO2).7 

The homoaromatic protons at positions 2-6 are centered 
at T 1.1 (multiplet); protons 1 and 7 give rise to a 
triplet at r 2.82 with Z12 = Zi8 = 8.2 cps. The aromatic 
ring current shifts the triplet of the endo-S-H to T 8.20. 
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Figure 1. Nmr spectrum (FSO3H) of exo-8-chlorohomotropylium 
fluorosulfonate at 2O0.8 

The spectrum corresponds well with that of the homo­
tropylium hexachloroantimonate2 after making allow­
ance for the effect of the exo-8-chlorine. The spectrum 
of II (X- = FSO3-) in fluorosulfonic acid (Figure 1) is 
very similar. 

IA and IB exist at —15° in a mobile 46:54 equi­
librium.6 Besides SbCl6 (in CH2Cl2 or SO2), SnCl4 

(in CH2Cl2; II, X - = SnCl6-)6 or AgSbF6 (in SO2 or 
CD3NO2), respectively, also cause chloride elimina­
tion from the exo,c/s-dichloride IA to give the exo-S-
chloro cation II. 

In contrast, fluorosulfonic acid attacks the endo-
dichloro conformer IB. Treatment with ^ 4 equiv of 
FSO3H in SO2 or with pure FSO3H below 0° converted 
IB to the e«c?o-8-chlorohomotropylium salt III ( X - = 
FSOr) . Also shown by the nmr spectrum of III (Figure 
28) is the equality of vicinal coupling constants, leading 
to two triplets, one for 1-H and 7-H, the other for 8-H. 
The T value of exo-S-H is shifted by 5.69 to lower field 
compared with endo-S-H in II. 

On warming a solution of III in FSO3H to 30.4°, a 
first-order isomerization to the exo-chloro cation took 
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Figure 2. Nmr spectrum (FSO3H) of emfo-8-chlorohomotropyl-
ium fluorosulfonate at — 4O0.8 

(8) TMS is destroyed by FSO3H. Chemical shifts were corrected by 
using the same T values for the two triplets as found for II (X = SbCU") 
in CDsN02. For mixtures of II and III in FSOaH, analogous correc­
tions were applied. 
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place with a half-life of 37.7 min. Additional kinetic 
measurements (nmr) at 15.5 and 20.0° furnished values 
for AH* of 24.4 kcal/mole and for AS* of 3.8 eu. 
The exo-chloride II, probably formed by ring inversion 
of the endo-chloride III, is the thermodynamically stable 
isomer since no III is detectable after complete isomeri-
zation. SbCl5 does not catalyze the process III -*• 
II. Winstein, et a/.,3 found a half-life of 19 min for 
the equilibration of the erccfo-8-G?-homotropylium ion 
in D2SO4 at ca. 32°. 

On treating 7nww-7,8-dichlorocyclooctatriene6 (IV) 
with SbCl6 in dichloromethane at —20°, the exo-
chloro salt II precipitated. The same reaction in SO2 

at —40° resulted in a solution of which the nmr re­
vealed solely the presence of II. Interestingly, fluoro-
sulfonic acid at —20° converted IV to the same exo-
chloro cation II. Thus, in the ionizations of I and IV, 
induced by FSO3H, the chloride anion is removed from 
the endo side, while SbCl5 gives in both cases the more 
stable exo-chloro cation. The origin of this dichotomy 
•—all ionizations described above are unidirectional and 
kinetically controlled—is unknown. 

Reppe's dichloride V9 is not transformed to a homo-
tropylium salt by FSO3H. 

(9) W. Reppe, O. Schlichting, K. Klager, and T. Toepei, Ann. Chem., 
560, 1 (1948). 
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The Halogenation of Cyclooctatetraene 

via 8-Halohomotropylium Ions 

Sir: 

The 7,8-/ra«5-dihalobicyclo[4.2.0]octa-2,4-dienes 
which Reppe, et a/.,1 obtained from cyclooctatetraene 
and halogen are the result of multistep reactions.2,3 

In the chlorination, we isolated four isomeric dichlo-
rides and elucidated their structures as well as their 
mutual relationships.3 The halogenation shows several 
unique features: (1) exclusive primary cis addition 
over the solvent range from hexane to acetonitrile; 
(2) unusually high rate; in the bromination at —55°, 
the solution remains colorless until the first drop of 
bromine exceeds 1 mole equiv; (3) the cw-7,8-di-
halocycloocta-l,3,5-trienes isomerize readily to the 
trans isomers despite steric hindrance of allylic reso­
nance in the tub form. 

We propose |8-halohomotropylium cation (II) as an 
intermediate. The formation of this homoaromatic 
species would obviously explain the high rate of halo­
genation. This being the case, both steps of Scheme 
I, formulated for chlorination, should take place highly 

Scheme I 
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stereoselectively. Experimental evidence on step 2 
is easily accessible. 

Step 2. We added 1.1 equiv of tetraethylammonium 
chloride to exo-8-chlorohomotropylium hexachloro-
antimonate (IV)4 in SO2 at —40° and recorded the 
nmr spectrum of the clear solution. Signals5 were ob­
served indicating the presence of only trans-7,8-di-
chlorocyclooctatriene (V).3 Thus, the chloride anion 
approaches C-I from the endo side. 

IE SbCLs 3E 
+ [(C2H5VN]+Cf • [(C,H5),N]+SbCLs-

cw-Dichloride III (2.6 mmoles) was treated with 10 
mmoles of fluorosulfonic acid in 6 ml of SO2 at —20° to 
give pure encfo-S-chlorohomotropylium salt (II, F S O 3

-

instead of C l - ) . 4 After 5 min, 15 mmoles of tetra­
ethylammonium chloride was introduced. The nmr 
spectrum of the clear solution (—40°, after 10 min) 
indicated 94 % cw-dichloride III and 6 % trans isomer V. 
The formation of the small amount of V is most likely 
not due to kinetic, but rather to thermodynamic, 
control.6 Thus, both homotropylium ions suffer 
endo attack by the nucleophilic C l - . 

Step 1. Only the e«ao-chlorohomotropylium 
ion II is consistent with the quantitative formation of 
the c/s-dichloride III in the chlorination of cyclo­
octatetraene. Conclusive evidence for the high stereo­
selectivity of step 1 (I -*• II) is not available because 
with no known chlorinating reagent can the reaction 
be terminated reliably at the cationic stage II. We 
assume that Cl2 •• • SbHaI5 chlorinates faster than Cl2 

and gives directly 8-chlorohomotropylium hexachloro-
antimonate. In the reactions with Cl2 and SbCh in 
dichloromethane, the hexachloroantimonates II (SbCl 6

-

instead of C l - ) and IV precipitated and were weighed 
and analyzed by nmr in SO2 at —40°. The use of Cl2 

and SbFi permitted direct nmr analysis of the clear 
reaction solutions. 

The data of Table I reveal that the yield of endo-%-
chlorohomotropylium salt rises with decreasing reac-

Table I. Reactions of Cyclooctatetraene with 1.0 
Equiv of Cl2 and SbHaI5 in Dichloromethane 

% hexahalo-
Equiv of 
SbHaI5 

1.2 SbCl5 

4.0 SbCl5 
1.2 SbCl6 
3.0 SbCl5 
2.0 SbF5" 
1.2 SbF5" 

Temp, 
0C 

- 2 0 
-20 
- 9 3 
- 9 3 
- 5 0 
- 9 3 

antimonate 
II and IV 

75 
78 
77 
76 

(100) 
(100) 

endo-C\(\\) : 
e*o-Cl(IV) 

17:83 
47:53 
50:50 
62:38 
66:34 
56:44 

"Solvent: CH2Cl2-SO2. 

tion temperature and increasing concentration of Sb-
HaI5; SbF5 appears to be more efficient than SbCl5. 

(4) G. Boche, W. Hechtl, H. Huber, and R. Huisgen, / . Am. Chem. 
Soc, 89 3344 (1967). 

(5) The limit of nmr analysis of the cis isomer III in the presence of 
a large amount of V is ca. 6 %. 

(6) Uncatalyzed isomerization of the cis-dichloride III in SO2 at 
- 40 ° led to 15 % V after 30 min and to 40 % V after 5 hr. 
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